
Audiovisual Granular Synthesis for
Composition and Performance

Michael R. Bernstein

Friday, April 16, 2004

Instructors: J. Sharp, L. Wolozin,

G. Levin & M. Doyle

2

Table Of Contents

0. Abstract … 4

1. Introduction … 5

1.1 Motivation

1.2 Overview of this Thesis

1.3 Contributions of this Thesis

2. Background … 7

2.1 Background Overview

2.2 The Science of Textures

2.2.1 Graphical Textures and Texture Synthesis

2.2.2 Audio Textures and Granular Synthesis

2.3 Textural Composition

2.3.1 Composition of Visual Textures

2.3.2 Composition of Audio Textures

2.4 Textural Performance

2.4.1 Visual Textural Performance

2.4.2 Audio Textural Performance

2.5 Evaluation of Background Material

3. Methodology … 19

3.1. Process / Method Overview

3.1.1. Solution Details: Audiovisual Granular Synthesis

3.1.2. Synthesis and This Thesis

3.1.3. The Visual: Google, Brakhage, and Beyond

3.1.4. The Audio: Moth Wings and Gravel

3.1.5. Jump Maps and Animated Texture Synthesis

3.2. Implementation

3.2.1. The Audiovisual Grain

3.2.2. Grain Capturing

3.2.3. Real-Time Performance

3.2.4. Graphical Texture Synthesis

3.2.5. Audio Granular Synthesis

3.2.6. Audiovisual Solutions

3.3 Prototypes and Programmatic Exercises

3.3.1. Sound Components: Granular Synthesis

3.3.1.1. Constructing Grain Streams

3.3.1.2. Object Oriented Grain Streams

3.3.1.3. Multiple Grain Streams

3.3.1.4. Reading In a Sound File

3

3.3.1.5. Java/Processing Applet

3.3.1.6. Multiple Grain Streams Reading Sound Files

3.3.1.7. Interface and the GUI

3.3.1.8. Interface Design

3.3.1.9. Object Oriented Windowing

3.3.1.10. GUI “Plumbing”

 3.3.2. Visual Component: Texture Synthesis

3.3.2.1 Real-Time Texture Synthesis

3.3.2.2. The Analysis / Synthesis Schism

3.3.2.2.1. The Jump Map

3.3.2.2.2. Jump Map Based Texture Synthesis

3.3.2.2.3. Pixel Ordering

3.3.2.2.2. Temporal Aliasing and the “Keeper Pixels”

 3.3.3 Performance Software Interface

 3.3.3.1. Narrative Map

 3.3.3.2. Graphical User Interface

 3.3.3.3. Interface Advancements

4. Evaluation … 41

5. Conclusion … 42

6. Works Cited / References … 43

4

0. Abstract

This thesis is an investigation of the atomic elements of digital sound and graphics,

and how they can be related and expressed through performance. My approach

draws on the fields of texture synthesis, stochastic composition, and a history of

texture as a composition and performance subject. Audiovisual Granular Synthesis

for Composition and Performance is comprised of two software components, one

that allows for the creation and composition of audiovisual grains, small bits of

sound and image that border on the imperceptible, and one that includes an

environment for performing these grains in real time. Once audio and visual

grains are composed separately, they are linked together. The final manifestation

of these paired grains are viewable as a full screen animation for the visual

component and a stereo sound component. The graphical explorations in this

thesis have led to an augmentation of the texture synthesis algorithm to include

controls for temporal coherence during synthesized textural animations.

5

1. Introduction

"The original presentation included two lasers, 92 spotlights, and bonfires and

processions of torches on the neighboring hillsides. The music was diffused throughout

the site over 59 loudspeakers. In the middle of the desert, in the middle of the summer,

it would have been, and by all accounts was, an awesome experience." - A description of

the performance of Iannis Xenakis' Persepolis, 1971. (James 2001)

1.1. Motivation

The reduction of perceptual material such as audio and visual stimuli to digital

signals raises many questions about the nature of the signals themselves, and how

they may be related to each other. It is possible and almost standard to execute the

same mathematical functions on digital sound and digital image files, because their

signals are reducible to the same types of data, often in the same ranges. When the

results of these functions resemble each other, what does that mean? The

investigations in this thesis are driven by the desire to make these connections clear

and to understand the fundamental similarities between signals that may seem

insignificant on the level of analysis, but take on new and important meanings

when these connections are made perceivable.

In researching the connections between these signal types, I have become

particularly interested in the concept of visual and audio textures and how they

relate to the signals that compose them. The abstract film work of Stan Brakhage,

pioneering American avant-garde filmmaker, has been a particular influence in this

realm, where texture is composed and arrange in order to tell stories as described in

the above quote. Additionally the compositions of Iannis Xenakis, Greek composer

and theoretician, extensively used the concept of texture in his music. I am

explicitly motivated by the idea that audiovisual textures, as composed of

audiovisual grains, can have the same profound expressive qualities as the work of

these two masters.

1.2. Overview of this Thesis

In an attempt to make connections between audio and visual signals, I have chosen

to focus my attention on the small elements that, when combined, create rich

Figure 1. A still from
Stan Brakhage’s “Moth
Light” 1963. Brakhage
glued moth wings and
other natural textures to
film and animated them
to tell the story of a
Moth’s life.

6

textures capable of representing dynamic content. This has lead me to consider

small patches of image texture and small "blips" or "grains" of sound that border

on the imperceivable yet represent significant information when combined using

various computational methods. In this way I can “knit” an audiovisually rich

“fabric” out of the “threads” of these small grains. This focus, on particulate

matter of digital images and sounds, has led me to investigate whether or not

connections on this "micro" or atomic scale can produce more meaningful

connections than those made on a "higher level." Connecting these atomic

elements using metrics that require signal analysis in addition to intuitive user

input, I have composed a set of audiovisual grains and a software interface to

perform with these tightly connected combinatory signals.

I have established the research contained in this thesis on the intersection of

representative works in the fields of audio granular synthesis, graphical texture

synthesis, and artistic work dealing with the composition and performance of

textures, both in the fields of motion graphics and experimental music. Within

these fields I have devised six categories that I will explicate and evaluate for

effectiveness in the respective field in that it is contained. These six categories

include The Science of Audio / Visual Grains; The Composition of Audio / Visual

Grains; and The Performance of Audio /Visual Grains/Textures. From these six

categories I intend to demonstrate that Audiovisual Granular Synthesis answers the

questions that I have set out to answer and that the examples I provide cover the

issues raised by the investigation contained herein.

Once the background for this thesis has been established, I will give an overview of

the solution from a conceptual and technical stand point, and explain the decisions

I have made for which areas of research to pursue and how to best embody this

research with a set of software tools. This section, that encompasses methodology

and implementation strategies, will revamp and describe the questions this thesis

raises and how these methodologies and implementations speak to these questions.

1.3. Contributions of this Thesis

This thesis introduces an approach, Audiovisual Granular Synthesis, to answer

long-asked questions about the connections between audio and visual stimuli.

Focusing on digital signal representations of these perceptual elements, I have

shown that pairings made on the micro scale, where individual components border

on the imperceptible, are fruitful in new and interesting ways with respect to the

overall question about the connections between divergent signal types.

7

In addition to answering questions about the connections between audio and visual

stimuli on a particulate level, this thesis deals extensively with the ideas of audio

and visual textures and how they apply to the construction of more complex and

dynamic perceptual signals. Grains of sound and graphical patches are inherently

linked with sound textures and graphical textures respectively, and I have shown

that utilizing a new medium of audiovisual grains can lead to novel explorations in

the field of audiovisual texture.

The realm of audiovisual texture offers many possibilities, and the focus of the

performance component of this thesis is real-time and improvised as opposed to

pre-composed and rendered. The final form of the performance software offers a

software interface that uses the metaphor of an ecosystem for its primary control

mechanisms. The user is capable of choosing between several textures on two

audiovisual channels, and to mix back and forth between the channels. The

selection of textures is based on a deformed grid map, which limits the connections

between textures, enforcing constraints on the movement from one texture to the

other during the overall performance.

2. Background

2.1. Background Overview

The background component of this thesis is interested in the need to investigate

the scientific and perceptual connections between audio and visual media as a case

for the importance of Audiovisual Granular Synthesis, and it will assert that audio

and visual textures represent fruitful territory for these investigations.

Keeping in mind the overall question of whether or not audio and visual signals

can be paired based on the atomic, micro scale elements on which they are built, I

have divided this background section into smaller subsections designed to deal with

the involved questions. The first section, "The Science of Textures," will explain

the scientific and computational background for audio and visual textures, while

pointing out historical and contemporary examples of scientists, engineers, and

artists who have dealt with these questions directly during the course of their work.

The second section, "Textural Composition," will deal with artists who have

utilized, in visual and musical fields, the ideas of texture and granularity in the

compositional elements of their work. Finally, "Textural Performance" will

highlight contemporary examples of artists who have used texture for purposes

8

beyond composition and have brought these issues into the realm of real-time

performance.

These three categories represent the thrust of this thesis and should be seen as a

large part of the argument being established, namely that the micro scale is the

most appropriate scale on which to "pair" audio and visual components, and that

pairings made on this level will produce intuitive and meaningful connections.

2.2. The Science of Textures

In order to explain the techniques I am using to create animate sonic and visual

textures, it is essential to explain the concept of textures and how they are

generated from a scientific standpoint. The examples in this section demonstrate

the origins of digital implementations of sonic and visual texture generation

through advanced forms of synthesis.

2.2.1. Graphical Textures and Texture Synthesis

Visual textures are defined as images that have a local structure but no global

structure. (Efros 2001) The types of textures commonly being referred to in this

thesis are of the type usually taken from photographs or other digital

representations of images. However this has more to do with the conventions of

texture synthesis than the directions of this thesis. I have synthesized textures with

synthetic examples in addition to sampled textures, and have tested the boundaries

of my performance software by inscribing dynamic image ability into the language

of the grains themselves. This point is where the synthesis algorithm I have chosen

to use differs from others: its ability to handle varying types, but not all types of

textures, allows for performance improvements which make it available for real-

time usage.

Considering the normal fare for textures, such as stones, or bricks, or other

stochastic and irregular patterns, such as those shown in Figure 2, it is difficult to

conceive of the individual elements that make up the image. When granular

synthesis was chosen to handle the audio component of the audiovisual pairing,

texture synthesis presented itself as an obvious choice, due to its reliance on small

patches of input textures in order to synthesize larger novel textures. Therefore the

micro scale equivalent of audio grains could be said to be these small patches which

are organized around the local content-based structures of the sample texture.

I was introduced to texture synthesis through the work of A.A. Efros, a computer

Figure 2. Four
Common textures for
computer graphics.
From the upper-left
image going clockwise,
these textures are
scanned, scanned,
synthesized poorly, and
synthesized well.

9

scientist at UC Berkeley who has done some recent revolutionary work in the field.

Through Efros I have encountered other implementations of texture synthesis

including Liang 2001, Zhu et al 1998 and the early work of Ken Perlin. These

examples represent a wide array of implementations of texture synthesis, including

perceptually based filter models, mathematically based function generators, and

those relying on probability density functions (PDF). (Liang 2001)

Texture synthesis is defined as a process by which larger novel textures can be

generated from smaller input images. In real-world computing applications,

implementations of texture synthesis are extremely helpful in any situation where

real time texturing is necessary and repetition in texture is not desirable. Take for

example a 3D simulation where a texture to be placed on a virtual wall is taken

from a scanned photograph. (Liang 2001) If the texture contains any stochastic

elements, that is if it is not a repetitive pattern but contains elements that bind it

together locally, it is not acceptable to simply tile the image. Tiling the image

produces undesirable effects such as repetition in the overall image even if the

image is not repetitive, and obvious visible seems throughout the texture, as shown

in Figure 4. (Liang 2001) As an alternative to tiling input textures, Texture

Synthesis offers the ability to synthesize, or create "from scratch," graphical

elements that maintain the local structure of a texture and thus preserve the

perceptual elements without detrimentally harming content.

Liang 2001 utilizes the concept of probability density functions by relying on

Figure 3. Two examples of Efros’ texture synthesis. The smaller texture on the left is the sample image,
and the larger image to the right is the synthesized texture. Notice the new patterns forming in the building
image and the problems with the pepper image.

Figure 4. The results
of texture tiling. Note
the repetition of the
pattern in the image and
the poor image
“seams.”

10

Markov Random Fields (MRF), a mathematical concept which characterizes the

values in a set in terms of the connections between values. This speeds Efros 2001

up by several orders of magnitude. (Liang 2001) MRF are useful because they are

known to model a large number of textures and they preserve local structures. The

concept of Patch Based Sampling is key to real-time texture synthesis, and its

similarities with the signals of audio grains make this technique highly desirable.

The texture synthesis algorithms presented above, including Liang and Efros’, are

all flawed in one major and similar way: their commitment to synthesizing all types

and classifications of textures preclude them from being successful in real time

performance. Efros synthesis takes seconds, while the other methods do not even

conceive that such an operation could operate in the real time domain.

In October 2003, Steve Zelinka and Michael Garland published a paper entitled

“Jump Map-Based Interactive Texture Synthesis” which boasted real time

performance for static texture synthesis. Textures 256 x 256 and smaller were

reported to take six hundreths of a second on an Athlon 1800+ PC. (Zelinka 2003)

This algorithm utilizes the idea of splitting the texture synthesis operation into two

distinct parts: an analysis stage and a synthesis stage. (Zelinka 2003) This way, the

operations which are the most time consuming, of comparing pixels or groups of

pixels to each other, is only done once, and the light operations, of assigning colors

to pixels, are the only operations which need to be executed repeatedly.

2.2.1.1. Real Time Texture Synthesis

Understanding that texture synthesis was possible in real time prompted me to

investigate the possibility of animated, temporally enhanced texture synthesis,

which could be capable of a dynamic range of styles, nuances, behaviors, and

aesthetic styles and approaches.

I envisioned a living Brakhage frame, where dirt could swarm around inside of

itself, the dead skin of the Moth could crawl, and the lines of the film strip would

live out their endless journey out of the top of the frame and back into the bottom.

2.2.2. Audio Textures and Granular Synthesis

Audio textures exist in opposition to traditional methods of conveying content and

emotion through music. While traditional composition techniques emphasize

larger time scales, textural techniques focus on the micro scale. (Roads 2001) For

example, a Bach Concerto refers to “notes” that a performer should play, varying in

11

exact time but always capable of being heard, while the Micro time scale is on the

order of 1/44,100 second. Working on the micro time scale, or the time scale in

which the components verge on the imperceptible, connotes certain compositional

techniques that are necessarily different than those for larger, more inclusive time-

scales. The results of operations on the micro time scale tend to be organic and

fluid sounding, as they tend to model "natural" sonic phenomena such as birds

chirping, gravel crunching beneath our feat, water flowing, etc. (Roads 2001) The

performance component of this thesis involves many manipulations of operations

which occur on the micro time scale.

Since the creation of the devices necessary to synthesize sound, there have been

technological advancements that have changed the face of electronic music

production. Namely the invention and popularization of all-purpose

microcontrollers like Pentium and Apple chips from the 1980's until the present

have created possibilities in the field that simply did not exist before. (Roads 2001)

Because this thesis is attempting to answer questions about the atomic elements of

digital sound, I have chosen to deal almost exclusively with a particular type of

synthesis known as Granular Synthesis.

Granular Synthesis is the creation of sound utilizing short pieces or "grains" of

sound that border on the imperceptible. Typically lasting anywhere from 1 to 100

milliseconds, these grains are combined in huge numbers to create "animated sonic

atmospheres." (Roads 2001) The grains themselves consist of frequency and time

domain information that, when combined and played back in large numbers, are

capable of sonifying natural and particle based phenomena. A component of

Granular Synthesis is its ability to create sonic atmospheres or textures by first

creating the grains and then altering their composition in real time. This allows

precise control over the sound texture being created without having to deal with

many of the undesirable pitfalls of improvising in real time with acoustic

instruments that are incapable of being manipulated on the Microsound time scale.

(Roads 2001) Microsound is a term developed by Curtis Roads, the first person to

implement Granular Synthesis in a digital environment, to refer to these sounds

that border on the imperceptible. (Roads '96) Granular Synthesis allows for the

novel creation of sounds and sound textures by controlling properties of the grains

themselves in addition to the manner in which these grains are "played" or

perceived.

Audio Granular Synthesis is a technique that was prompted by the intellectual

Figure 5. A visual
depiction of an audio
grain, shaped by a
Hanning Function. The
contents of this grain
are sinusoidal in nature.

Figure 6. Xenakis’
conception of grains in
space, along the axes of
frequency, intensity and
time. Here we see the
beginning of the
“clouds” metaphor
which Roads extends,
and we see the grains
developing over time.

12

curiosity of a long line of composers, computer scientists, and musicians. Most

notably, Iannis Xenakis composed Analogique A&B for tape and strings that used

principles of granular synthesis that he discussed as composition on the

microsound scale. (Roads 2001) After taking a course with Iannis Xenakis in

Music and Mathematics at Indiana University in 1972, Roads went on to

implement and develop digital granular synthesis for the next thirty years. (Roads

'01) This course was a distillation of Xenakis' book Formalized Music from one

year earlier. (Xenakis '71) Roads, in his two tomes on digital sound The Computer

Music Tutorial (Roads '96) and Microsound (Roads '01), outlines the history and

implementation of every common and most uncommon techniques for sound

synthesis.

Roads lays out the conceptualization of granular synthesis in terms of "clouds,"

that are controllable and parameterized to an amazing degree. During the creation

of grain clouds, Roads outlines how you can control the density of the grains at any

point during the cloud, and also control the duration, amplitude, and content of

the grains in real time as well.

2.3. Textural Composition

2.3.1. Composition of Visual Textures

Composing Visual Grains and Textures has deep roots in experimental film, but is

perhaps most excellently represented in the work of American Filmmaker Stan

Brakhage. Over four decades Brakhage uncompromisingly explored many issues

with film that examined the nature of filmmaking and the limitations of the

medium. By applying paint and other objects directly to film, Brakhage was able

to explore composition for texture in ways that were not possible using a camera,

filming "reality" and abstracting it to a level of texture. Instead Brakhage chooses

to synthesize texture as he composes, using these non-camera and non-developed

film methods as ways to circumvent literalness of representation.

Brakhage's methods were explicit in their desire to explore texture in many

different examples. Moth Light (1963) is a short film where moth wings, grass,

leaves, and other natural objects are glued to the film in order to show the natural

textures up close. In "Eye Myth" (1972), hand-painted textures are applied to a

still image (a photograph) until the image is obscured, and then it is partially re-

revealed. "The Garden of Earthly Delights" (1981) and "The Dante Quartet"

(1987) explore both methods of attaching objects and hand painting textures to

Figure 7. Stills from
Brakhage’s Dog Star Man:
Part 3. Sitney points out
in his book Visionary
Films the similarities
between this work and
Jackson Pollock’s
Abstract Expressionist
Paintings. This thesis is
interested in this idea
insofar as this work can
be extended to the idea
of texture composition.

13

film. In the notes to the Criterion DVD Collection "by Brakhage," Fred Camper,

long time Brakhage Historian, notes that Brakhage would not put music to most of

his films because the music would "dominate the image's rhythms" that were

fundamental to the appreciation and understanding of Brakhage's films. (Camper

'03)

I have explored the relationship between these visual textures and sound, and using

Brakhage's content as an inspiration, I have ecplored the synthesis of these textures

on a smaller scale (with a finer granularity) with digital, non-natural means. In the

creation of my performance software I had the desireto treat the substance of

Brakhage's films as a fluid surface that I could manipulate and change with simple

physical gestures. With each performance, I hope to compliment the types of

visuals that Brakhage conceptualized without ruining the feelings evoked by silence

that make his films so remarkable.

The types of visuals this thesis demonstrates includes various visual textures being

animated using texture synthesis from jump maps. The types of textures used in

my software include I did on my skin, along with high resolution scans of flowers

and plant matter, and digital file format images of rocks, rusty metal, animal hair,

and more.

2.3.2. Composition of Audio Textures

Historically, achieving audio textures required the use of fluctuations in amplitude

and pitch in normal instrumentation settings. Many composers utilized concepts

of texture in their orchestral works, such as Xenakis, Stockhausen, and Harry

Partch. The interesting textures, however, developed with the advent of

electroacoustic music, or music that explored alternate electronic methods of sound

production alongside traditional acoustic methods.

The idea of sampling in the analog sound realm was used by Pierre Schaeffer and

Pierre Henry, amongst others, in a movement in composition in the early 20th

century called "Musique Concrete," translated into english as "Concrete Music" or

"Actual Music." The idea behind Musique Concrete was that utilizing instruments

alone to make sounds is to leave out a large part of what actually makes up sound,

and that using "concrete" or "actual" sounds to make music is somehow more

honest and worthwhile.

Schaeffer and Henry composed works for magnetic tape, where pre-recorded

Figure 8. Pierre
Schaeffer at the helm of
one of his many machines
for manipulating magnetic
tape at his state-
sponsored studio in
France. Schaeffer is
often credited with
coining the term Musique
Concrete, and the work
he did in the early 20th

century exemplified
textural audio
explorations.

14

sounds from natural or industrial sources were manipulated to make

unrecognizable and dynamic sounds with new timbres and unique time scales.

Famously, Henry composed a work for magnetic tape entitled "Variations for a

Door and a Sigh," where the sound of a door slamming and a person sighing is

manipulated and repeated into myriad textures and abstract soundscapes. (Henry

1965) The concept of sampling has been extended and utilized to the present day,

taking many forms from Hip-Hop to Noise Music.

Synthesis, on the other hand, utilizes the concept of the creation of the elements

of a sound "from scratch," where the individual elements are perceptually

recognizable but not necessarily "meaningful." Hardware sound synthesis toward

the ends of creating music was popularized and executed during the 1960's, with

synthesizer companies such as Moog Music and Buchla creating synthesizers for

the professional and home markets. (Trocco 2002) These synthesizers used analog

circuitry to build larger sounds with a modular framework that had the potential to

be connected in many different ways. By linking sound generators with filters, and

other modulators, the analog systems were capable of producing strange sounds

never heard before that time. In this way, the creation of music became

intrinsically tied in with the technology being developed. The history of

instruments that utilize electricity or electronic sound creation methods are

precisely detailed in a chart in Curtis Roads' Microsound entitled "Electric and

electronic music instruments: 1899-1950," with over eighty examples provided.

Iannis Xenakis was responsible for the progeny of Composing Audio Grains, when

he conceptualized, composed, and executed Analogique A and B in 1958-59.

(Roads '01) Xenakis here composed sounds that are beautiful and natural

sounding, very dynamic, and fresh sounding. The outcome, less than five minutes

of synthesized sound, was remarkable for the time and shows how dedicated

Xenakis was to seeing his concept through to fruition. I will clearly not be

emulating Xenakis' methods, of using magnetic tape and generators to achieve

granular synthesis. Instead I will use his example as an inspiration for the

conceptual underpinnings of composition with grains. As excerpted in Microsound

(Roads '01), Formalized Music (Xenakis '71) defines the concept of dealing with

sound on a micro scale, how this could be implemented, and what kind of impact

this would have on the outcome of the composition and the very practice of

composing. I have tried to extend this to the audiovisual, where I have considered

clouds as consisting of Audiovisual grains instead of solely Audio grains as Roads

and Xenakis espoused. I have often considered Xenakis' music (in Persepolis,

Figure 9. Don Buchla’s
Buchla 100 Music Box,
one of the first Modular
Synthesizers for the
composition of
electronic music. The
music created with
these synthesizers has
inherently textural
qualities due to the
focus on timbre .

15

Analogique, and other Electronic works, for example) to be very visual in terms of

its use of space and tonal coloring, and his early work as an architect has often been

cited as an influence to his later work. Perhaps due to the conceptual aspects of the

visual, the synthesis with the sonic will not be hard to muster.

2.4. Textural Performance

2.4.1. Visual Textural Performance

Performing visual texture is well supported by the conveniences of modern

computational systems. Programming suites like Max/Jitter, a commercial product

for graphically programming matrix based data streams (optimized for use with

video frames) offer direct access to real-time video information with little

computational or programmatic overhead.

Figure 10. Sue Costible performing with visual textures. Using Jitter, a
projected surface, and pre-composed textures, Costible creates live and
idiosyncratic textures that repeat themselves and reveal their technical
underpinnings. This work is significant in its reliance on texture, and resembles
Brakhage’s work, to some extent, in its oblique desire to represent narrative.

Sue Costible, a San Francisco based artist, uses Jitter in her own work to create real

time collages out of pre-composed textures that she makes with transparencies and

vellum. A time delay system and manipulation of the video frames makes for an

entrancing visual experience that points directly to the concepts I am trying to

16

outline in the genre of texture performance. While there are moments where the

subject matter is representational, it is not these moments, but rather the

transitional points between abstraction and representation that are emphasized.

Costible is able to move between textures with ease due to the ease of the interface.

This has been an inspirational component for me of Costible's work, that it is an

excellent example of how to take advantage of the power of the computer without

having to deal with its admittedly arcane interface methods (mouse, keyboard,

etc.). Costible is often accompanied by music when she plays, and in this respect

my work will differ from hers: she performs along with music, using presumably

perceptual metrics (rhythm, pitch, etc.) to influence how she performs. My

system is composed of a set of united audio and visual textures, with a selection

method that can hopefully approach the natural and intuitive method that Cositble

has developed.

2.4.2. Audio Textural Performance

Conceptualizing music performance in terms of texture is an idea that predates

granular synthesis, in the work of Xenakis and beyond. Instead of focusing on

"contemporary classical" composers who wrote pieces to be performed that are

textural in nature, I would prefer to focus on contemporary electronic musicians

who use principles of texture and improvisation to explore sound. Mego Records,

an electronic music label based in Vienna, Austria, is an example of a collection of

artists who are principally involved in the idea of musical texture. Amongst these

artists are Pita (Peter Rehberg, one of the founders of the label) and Christian

Fennesz (also known as simply "Fennesz"). These two musicians utilize in their

music an intense, moment-to-moment focus on the idea of texture and use it in

extreme forms to enormously dynamic ends. While Pita's music tends to be harsh

and in some respects more textural, Fennesz is interested in the intersection

between the analog and the digital, as is evidenced on his album "Endless

Summer," that finds him playing guitar through a computer, processing the sound,

then running the digital sound through analog circuitry to an analog recording

device. The slowly shifting textures of "Endless Summer" show a dedication to

texture in well crafted passages that move from melodies to noise and back again.

Pita's textures are more raw and less processed, and tend to be evocative of the

extreme energy present in the sound particles he is manipulating. While to my

knowledge neither of these performers uses granular synthesis directly, their sounds

are indebted to the concept of Microsound and the work of Xenakis and Roads

certainly had a subconscious if not direct effect on their sounds.

17

2.5. Evaluation of How Background Material Contributed to This Thesis

Each of the examples I have chosen to represent the background material for this

thesis have components I borrowed from, pitfalls I have avoided, and concepts I

have utilized. As a systematic method of explaining these various evaluations, this

subsection will follow the section structures above but will emphasize what I have

learned from approaches taken by precedent work.

2.5.1. Texture Synthesis

I have learned scores from researching texture synthesis, in terms of how textures

are created, and what the definition of a texture is. Most of the work I have looked

into is excessively scientific and not artistically based, and it is nearly all completed

by rendering as opposed to being capable of performing in real-time. The

scientific component of the research papers I have read is harmful in the respect

that there are certain “benchmark” textures that these algorithms need to process in

order to be considered “appropriate” or “functional.” In the case of the work in

this thesis, I have composed visual textures to synthesize larger textures from, and

in a sense I have designed my system according to the textures I wished to

synthesize.

It is because I have tailored my system to accommodate the natural textures I am

interested in synthesizing that I have chosen to use Zelinka and Garland’s jump

map algorithm, which has been successful in terms of its ability to synthesize

textures fast enough to perform real time texture animations. The brilliant stroke

in their method, of dividing the process of analysis and synthesis, has broken

through so many barriers in terms of high quality and fast synthesis that in many

respects this thesis could not have been executed without it.

2.5.2. Granular Synthesis

The work of Curtis Roads has been a great help in my conceptualization and

realization of programmatic granular synthesis. Microsound as an overview is

extremely thorough and outlines several possibilities that I have used in various

combinations to execute the audio component of my performance software. Roads

does not discuss the visual components to the creation of grains in Microsound, but

does go into how they were linked in the field of experimental animation. The

visual metaphors he uses to describe grains, such as clouds and other natural

phenomena, are extremely helpful in conceptualizing the technical components of

the method. These metaphors have also come into play with my interface design

process, which utilizes similar concepts in the audiovisual realm. Roads’

Figure 11. Mr. Zelinka’s
diagram explaining the
jump map. The
centermost yellow square
represents a neighborhood
of the input texture which
is being compared against
the other yellow squares.
The numbers represent
how similar, according, to
Zelinka’s algorithm, the
neighborhoods are to the
centermost area.

Figure 12. An early
sketch from one of my
notebooks about how to
granulate sound files in
real time. The sound
file is converted into a
simplified 8-bit version,
and a grain (shown
lower-left) is shown
operating over several
streams.

18

metaphoric representations have made it easier for me to understand granular

synthesis, because, as a designer, visual explanations are particularly resonant.

Finally, Roads’ discussions of pushing granular synthesis into the real time domain

have been inspiring: he sees no limit to the computational possibilities of modern

computers, and erased any doubt I had that the technical accompaniment of

visuals to sound is possible.

2.5.3. Composing Visual Textures

Stan Brakhage’s visual textures are extremely inspirational to me, and pointing out

where this work “lacks,” after reading his essays, interviews, and letters, seems a bit

contradictory. His refusal to add sound to many of his films is inspirational to me

rather than inhibitory; he points out that in order for this coupling to be

worthwhile, it must be tight and natural. Above all, it is Brakhage’s penchant for

narrative through abstraction that I would like to borrow from, and his unflinching

desire to communicate using alternative media. Brakhage made films while he

starved, and created in conditions with little to no technology, working in a

medium considered amateur, and yet produced some of the most breathtaking

examples of abstract cinema. This thesis is inspired by the notions Brakhage has

put forth about the purity of visual expression, and therefore the links I have made

with the audio components are that much more well thought out.

2.5.4. Composing Audio Textures

Many musicians consider their work “textural,” and the examples I have provided

in previous sections merely represent, to a certain extent, current tastes and

aesthetic triumphs. Musical composition is something that I have not studied

formally but have learned a great deal about by reading the essays and ideas of

many great modern composers, from Henry Cowell to John Cage, Iannis Xenakis,

Stockhausen, Harry Partch, and more. I am interested in the real time

components of much of the work of these composers, and how the textural

qualities of their work can be extended to improvisational space in the textural

domain. The visual possibilities posited by these great composers are endless, and

often the scores, essays, and other ephemera surrounding their work offers many

clues to their personal visual inspirations. I have continued to investigate these

visual components, in the hope of extending my own work into the domain of

sublimity that many of these composers are capable of achieving.

2.5.5. Performing Visual Textures

Visual texture performance is a much-maligned practice in current computer

19

graphics trends, often showing up in over-saturated, palette-rotated, feedbackey

video signals that lack content and are severely damaged in scope by their blatant

penchant for psychedelia. While I am not opposed to “mind expanding” graphics,

I am not interested in pure style, and my convictions for texture should not be

confused with a love for complete abstraction. Sue Costible offers an interesting

insight into this arena, shying away from bright colors and tending toward more

muted tones, using gestural components to form visual textures, and allowing the

tools behind her work to speak for themselves in many ways. Costible’s work

often accompanies music, but is not by any means audiovisual. In this manner she

falls more in line with the “VJ” or Video-Jockey set, who compose live visuals to

music. The audiovisual substance I will be creating and manipulating will be

outside of this context, where the two will be inseparable. It will be interesting to

see, in relation to Costible’s work, how well my own is capable of faring.

3. Methodology

3.1. Process / Method Overview

3.1.1. Solution Details: Audiovisual Granular Synthesis

Audiovisual Granular Synthesis is a combination of techniques from the fields of

Audio Granular Synthesis and Graphical Texture Synthesis. Breaking the

components down into their respective media is helpful for explaining the methods

used in their combination. The methodology presented here should be seen as a

part of a larger group of questions, namely: "Can the manipulation of the atomic

elements of digital graphics and sound aid in their combination in new and

meaningful ways?" and "Can these atomic audiovisual pairings be used to compose

and perform audiovisual textures?"

Audiovisual granular synthesis as an approach is different than its implementation.

In addition to conceiving of audiovisual grains as units of this type of synthesis, I

have composed a set of these grains. This set of grains is accessible within the

context of the performance software I have written, which allows me to select and

manipulate these textures in real time.

3.1.2. Synthesis and This Thesis

This thesis is inherently interested in the connections between the audio and the

visual, and the combination of these media in novel ways and in both scientific and

aesthetic terms. This combination has prompted me to research and understand

Figure 13. Sketches from
my notebook depicting
possible textures to
synthesize. From top to
bottom: human skin, grass,
and dirt.

20

the manner in which these media are constructed, and understanding these

phenomena is impossible without understand the atomic or particulate matter

which compose them. It is for this reason that the principles of this thesis rely on

the principles of synthesis.

Synthesis in sound is a term utilized in opposition to the idea of "sampling" or

using pre-existing analog or digital media to compose "new" works. A form of

synthesis that straddles the boundary between sampling and synthesis is Granular

Synthesis, that I have relied on for the audio component of this thesis.

The idea of synthesis in terms of graphics is perhaps less intuitive and obvious than

its parallels in the realm of sound. Graphical synthesis has many applications and

covers many areas that are outside of the scope of this thesis, but one particular

area, known as Texture Synthesis, is particularly relevant to the areas of research

that this thesis deals with.

3.1.3. The Visual: Google, Brakhage, and Beyond

In attempting to conceptualize aesthetic directions that this thesis would explore, I

was tempted to move away from vector-based graphics or graphics that were

entirely abstract, formless and based on drawing commands. Instead I wanted to

investigate graphical textures that while maintaining some of the abstracted

components of much vector or drawing based work, could, if necessary, call upon

the representational and take these types of forms. This is based on discussions I

had with Golan Levin during the summer of 2003, in that he asked me to

enumerate for him my sonic and visual inspirations. I answered that I was inspired

visually by Google Image Searches, the service provided by Google that allows you

to enter in a term and get a list of images as a result instead of a standard web page.

My interest in this area has continued and recently has manifested itself as in

interest in the work of Stan Brakhage, Harry Smith, and other experimental

filmmakers who used various techniques to explore the composition of visual

moving textures.

The graphical methodology of this thesis is in many ways more experimental and

involved than the audio component, that has a long history of academic and

artistic work behind it. Texture Synthesis is an inherently more scientific and

exploratory field, with many of its foundational components still being fleshed out

and changed according to the hardware capabilities of commercial and personal

computers. To be able to tell a story with an animated visual texture is a goal I am

21

striving for with this component of my thesis. My predilection towards natural

textures is displayed in a list of possible textures I made for a posting on my online

thesis journal:

 “facial hair,skin, body hair, leaves, brushed metal, dirty glass, blood splatters, cat hair, many different kinds of
woods, plastics, anything dusty, spotty, naturally scattered, pinkies after day of writing with pen, scar tissue on
right hand, flowers, wax, bright fabrics, thin line drawings, pencil smudges, mystical symbols, brakhage frames,
leather, wires, solder splatters, animal trails, bug shells, sand, salt, spices, grains, gradients, modulo textures,
noise patterns, clouds, freckles on face, cat litter, science fiction book covers, aged browning newspaper,
chipped paint, oil, marble, trees, moss, ivy, dirt, closeups of erased chalkboard, acne, rashes, gums, tongue,
inside of nose, mucus, vomit, saliva, shit, sea water, seaweed, raw meat, raw fish raw chicken, burned meat, as
many animal skins as possible, toenail clippings, spray paint, dripping marker, nipples, lentils, bottoms of cd-rs,
rugs, weaves, wool, spider webs…”

3.1.4. The Audio: Moth Wings and Gravel

The audio component of the texture performance is meant to have an organic and

evolutionary sound that will be evocative of the visual. As Stan Brakhage has

stated, having a film playing along with music is no more important than having a

soundtrack playing while a painting is being displayed in a gallery. (Brakhage

2000) I would like to circumvent this by having the sound and image be

connected from "birth." In effect, one is not playing along with the other, they are

playing together, and could not exist without the other.

3.1.5. Jump Maps and Animated Texture Synthesis

Animated Texture Synthesis, as the visual component of this thesis, and beyond, is

a novel concept that presents interesting questions to the problem set involved with

texture synthesis. If you are generating textures for every frame of animation

(ideally 30 per second), how do you maintain a sense of temporal coherence from

frame to frame? The nature of Zelinka and Garland’s jump map algorithm

demands randomness: it is built into the heart of the system. Because partially

stochastic, natural textures are favored, it cannot be a straight, predictable

situation. The randomness is necessary.

Adding an extra set of functions to handle temporal coherence has been one of the

most interesting challenges of this thesis, which relies heavily on the possibility that

the system can be as visually dynamic as the sound has already presented itself to

be. The ability to move from slow to fast, from noisy to patterned, from loud to

quiet, etc., are all necessary to a system if it is going to be performable and capable

of virtuosic composition and performance. Audiovisual Granular Synthesis has the

potential to be a medium that grows with our ability to provide it with the right

kinds of materials to synthesize.

22

3.2. Implementation

Informed by Zelinka, Xenakis, Roads, Brakhage, and more, I have created a

performance system to perform audiovisual textures. This solution has an attempt

to answer the questions I have posited about the nature of digital sound and image

and how these media can be related. The textural component of this thesis is an

aesthetic choice but it has also provided a scientific and research based framework

to keep the work grounded.

Audiovisual Granular Synthesis is a term I have introduced to deal with the

problems presented and discussed by previous attempts to marry the audio and the

visual in the digital realm. This solution includes a method for implementation of

the creation of audiovisual grains (the basis of the synthesis type I am introducing)

and a second implementation for the tools used to perform textures built from

these audiovisual grains.

3.2.1. The Audiovisual Grain

The definition of an audiovisual grain in terms of my thesis is a grain that is

created by the pairing of an audio grain as previously defined with a small sample

texture.

The composition of audiovisual grains was conceived of as a four-part process

developed during the first part of my Fall Thesis Semester, 2003. These four parts

were:

1) The composition of separate audio and visual grains

 2) Grain analysis and the creation of intermediate representations

3) The pairing of these grains according to the results of step #2

4) The storage of these pairs in a database for later access

These four steps have been revamped and include many other more intermediary

steps, but the performance software that uses these grains is now complete. I will

now spend some time elucidating these four steps involved in the composition of

grains, as they stand as a well-constructed document that serves to explain how the

theory in this paper is applied, and then outline the methods I have pursued in

terms of their performance.

The composition of separate audio and visual grains refers to the process of

23

creating and programming short bits of information (1 to 100 milliseconds in the

case of audio, 64x64 to 256x256 pixels in the case of graphics) to later be joined,

stored and played back. I have “sampled" larger images and created some synthetic

textures using varying mathematical functions and other experiments in order to

develop a large visual vocabulary for my system. This is an important concept in

this thesis, and is prompted by Curtis Roads' attempts to make a Granular

Synthesis system capable of real-time virtuoso performance. (Roads 2001) The

performance capabilities of the method I am introducing must be capable of

dynamic performances in both the audio and visual realm.

For the audio component of the final grain I have created synthetic textures and

also sampled some existing digital sound files in order to have a wide sound palette.

I am using mostly sampled sound for the audio source of the audiovisual grains

because the variation that they offer both in terms of their sound character and

endless supply is appealing to me on logistical and aesthetic levels.

3.2.2. Grain Capturing

Out of all of the methods I have employed to generate or capture audio grains,

common audio editors like Peak for the Macintosh have been the most

straightforward and aesthetically rewarding. Likewise for the visual grains I have

used Adobe Photoshop to capture square Textures from existing digital images, or

images I have scanned or imported in some other manner.

Sampling larger amounts of time than is necessary to make one audio grain results

in fascinating synthesis when the grain is used as a “playhead” which cycles

throughout the sample. The granulation of a sound file, as Roads refers to it,

brings out many fascinating textural dimensions within the sound file.

High-resolution images are the best digital sources, as they often contain many

different examples of possible texture sources. For example, when I sampled pieces

of my skin and hair, these 64 x 64 pixel images came from scanning my face at 600

dpi, often creating images in the order of 100 times larger than the designated

sample size necessitates. Having this much material made choosing areas to take

from very interesting and also yielded great results.

3.2.3. Real-Time Performance

While the process of composition, analysis, pairing, and storage of the audiovisual

grains raises mainly aesthetic questions, their usage in a real-time performance

24

setting raises mostly scientific or programmatic questions which I will outline in

the course of discussing this final implementation section.

The existence of a database of audiovisual grains does not necessarily direct the

method in which these grains can be performed once they have been composed.

The nature of the grains, however, does demand that they be grouped and

multiplied before they can make any significant perceptual sense -- it is this

component that truly makes them "grains." A graphical or sonic texture is

generally referred to as such because of the elements that compose them, and I will

now discuss the methods I will be using to turn these grains into textures.

3.2.4. Graphical Texture Synthesis

The graphical style for this thesis involves the manipulation of fields of animated

live textures synthesized in real time using the Zelinka-Garland jump map

algorithm. Natural textures like hair, skin, open pores, and others of the variety

listed above are animated and given life. Parameters of the texture, such as the size

of grains, the number of grains, the activity of the grains and the randomness in

the grain system, can be manipulated in real time using a software interface.

 The visual components of this thesis owe heavily to Brakhage and the idea that he

could tell the story of the life of a Moth by using textures from the Moth's wings

alongside textural elements of grass, light, and other materials which speak to the

existence of this creature whose absurd attraction to light almost always causes its

death. (Brakhage 1963) The full screen textures I have created evoke moments of

Brakhage pieces, and focus on the smallest elements that characterize them as

natural and in many ways beautiful.

The jump map algorithm involves the creation of a data file that represents, for

each pixel in the input texture, three other pixels who reside in a neighborhood

with similar characteristics as the current pixel. In addition to the addresses of these

pixels, the data file stores a floating point number (0…1) which represents a metric

of “sameness” between the neighborhoods, determined by the jump map

generation program according to a set of rules primarily the L2 norm.

By using the numbers generated in the jump map, the synthesis algorithm is

reduced to the task of iterating through the output texture, copying pixels from the

input texture, and occasionally jumping around the input texture according to the

information in the date file, in order to maintain spatial visual coherence

Figure 14. A sketch
outlining my process for
creating visual grains
from scratch. A body
part or object is
scanned, a section of
the scan is chosen, this
section is turned into a
jump map, and then a
texture is synthesized
from this section.

25

throughout the output texture. The jumps, when probabilistically controlled,

make up a large part of the reason why the Zelinka-Garland algorithm is capable of

synthesizing natural textures, but does not always perform on structured textures.

(Zelinka 2003)

Within the scope of a database of grains, I was determined to steer away from

perceptually based and improvised selections, as I feel that a screen to display these

grains would be cumbersome and unintuitive. I found it more interesting to create

"scores" of a sort which limit the amount of possible grains to "pieces" or

"compositions" where I see them fit. Within these compositions, I have included

the ability to manipulate certain components of the graphics that will change

parameters of the sound, and vice versa.

Given that the grains used in this performance are audiovisual in nature, it seems

contradictory to proclaim that the graphics will control the sound or vice versa.

However this is far from the truth -- the programmatic elements of the

performance piece demand that one control the other. Rather than shying away

from this component I have embraced it and made sure that the elements of

control do not cause one component to dominate the other. Additionally, the

sound component of the performance relies on many more stochastic strategies

than do the graphics -- this is a function, to some degree, of the perceptual

differences between sound and vision, and between Granular Synthesis and

Texture Synthesis.

3.2.5. Audio Granular Synthesis

The granular synthesis engine of my performance tool utilizes the methods laid out

in Curtis Roads' tome on granular synthesis, Microsound.

In making the connections between the audio and visual components of the grains,

I have kept as strong of a relationship as possible between the spatial components

of the graphics and the spatial components of the sound. Inherent to the concept

of granular synthesis is the idea that the audio grains, while being played, are

scattered throughout the stereo field. This has been scientifically proven and

documented by Roads and others working in the field, and a detailed explanation

of this concept is out of the scope, to some degree, of this thesis. It is important to

note, however, that scattering these grains in cloud formations throughout the

stereo field reduces the amount of overlap and hence allows more precise playback

and detailed perceptual attention to each specific grain. The ear is extremely

Figure 15. A sketch
depicting the
implementation of
granular synthesis as
outlined in Microsound
by Curtis Roads. Grains,
streams, and file
granulation are
discussed.

26

sensitive to minor changes in the grains, and overlapping every grain in a

monophonic output does not give the same effect as true stereo granulation.

Control over the parameters of sound in real time is a cornerstone of the

performance system which I have designed and implemented using

PortAudio/C++. The same parameters outlined in the visual section (grain size,

grain population, grain activity and grain randomness) exist in the audio domain as

well, abstracted as different properties which deal with controlling the audio.

3.2.6. Audiovisual Solutions

Using the idea that these grains need to be projected in the stereo field, I have

decided to distribute the audio grains randomly throughout the stereo field as they

are handled accordingly in the visual domain. Initial sketches I made for this thesis

involved the “placement” of audiovisual grains, which has been overcome by the

idea of mostly working with “fields” of audiovisual texture, in full screen and full

speaker, so to speak.

In addition to the stereo treatment of the grains, a more fundamental question

arose: how to determine how many audio grains to play in relation to how many

visual grains exist on the screen. A 1:1 correlation is not only computationally

oppressive, but perceptually unnecessary, as the amount of data capable of "filling"

the ears is certainly not the same as the amount capable of "filling" the eyes. That

is to say that our visual and audio capacities do not match -- this is a given. I have

explored the question programmatically and have fine tuned the amount of audio

grains to play at once. Using thirty-two grain streams at once sounds only

nominally fuller than sixteen or twenty-four, and is more computationally

oppressive. This speaks to the fact that the visual texture algorithm is more

processor intensive than the audio component, and has more leeway built into it: it

tends to slow down. I settled on sixteen simultaneous grain streams at 44,100

samples per second, which allows me to play an enormous amount of grains per

second.

Finally, there is the issue of how to control the parameters of the audio grains with

the parameters of the visual grains. These mappings speak to the heart of this

thesis, and there has been much experimentation executed in this area. There were

many obvious pairings that I wanted like to avoid, and more challenging pairings

that I spent many hours exploring.

Figure 17. A sketch
depicting the
spatialization of sound
grains. One of the early
audiovisual connections
I considered wass the
positioning of sounds in
the audio spectrum
according to their
positions in the visual
texture.

27

The abstracted parameters, as stated in the “ecosystem metaphor,” speak to the

system as an ecosystem that has as its population audiovisual grains. Each grain’s

size and even the number of grains which comprise the system at any one given

time are controlled by the user. Additionally the amount of randomness in the

ecosystem is controllable, along with the amount of activity.

It has been important to me that the visual textures are capable of evolving slowly

or quickly, in a deliberate, creeping manner, or a manic, jagged manner. I decided

early on that this would be a necessary component if the dynamism of the audio is

to be matched. In many ways the two components direct each other, and their

hybrid creation maintains characteristics of both.

3.3 Prototypes and Programmatic Exercises

This section outlines a production and research history that leads up to the

finalization of the performance software that represents the technical component of

my thesis. The algorithms used for the implementation of granular synthesis draw

inspiration conceptually from Curtis Roads and Iannis Xenakis, and technically to

Golan Levin, from the pseudocode section of his thesis, Painterly Interfaces for

Audiovisual Performance. (Levin ’00) All of the programming described in this

section was completed in C++ using Portaudio for sound production and OpenGL

for graphics. Using these libraries with C++ makes for a cross-platform, easily

portable set of code that I could compile on any platform supported by the

Libraries (Windows, Linux, Mac, etc.).

The subsections that follow are a history first of the construction of the audio

component of the thesis, the visual synthesis method, and the interface,

programmatically and graphically, to the program. Following this there will be an

overview of the final program interface,

3.3.1. Realizing Sample Based Granular Synthesis

In the following subsections I will outline my methodology in realizing sample

based granular synthesis, from sinusoids, to reading in sound files, to perform

audiovisual textures.

3.3.1.1. Constructing Grain Streams

In order to move conceptually from “extremely fast Amplitude Modulation” to

granular synthesis, I constructed a single grain stream that performed Amplitude

Modulation on the micro-time scale. I used the sine wave generation code from

28

my mrbNoise project, and used a Hanning function with a fixed envelope size.

(Bernstein ’03) This procedural grain stream allowed me to hear the sound of

asynchronous granular synthesis for the first time as I programmed it, and was very

inspirational. By scripting the frequency changes in the grain, I was capable of

hearing what frequency transitions in the granular domain sounded like, and my

quest had officially begun. This procedural, non Object Oriented grain stream was

extremely limited in that it did not offer the ability to be cloned and multiplied.

The next step was to construct a class that contained the grain stream and all of its

properties.

3.3.1.2. Object Oriented Grain Streams

Once I was satisfied with the procedural grain stream and had worked out the

various properties that needed to be included in the class, I began to construct it. I

defined a set of variables for the class: duration, starting time, current time,

envelope index, frequency, and pan. Additionally I created two arrays for the class

to hold, including a sine wave table and a Hanning window function computed to

a fixed duration.

In terms of functions for the grain stream, I had varying success determining which

were necessary and which were not. After some experimentation, I ended up with a

function to construct the grain stream (the constructor), a “next” function to

advance to the next sample for output, a “setPan” function to set the panning of

the grain stream in question, a “setDuration” function to set the duration of the

grain, a “playTable” function to play the sinusoidal wavetable, and a hanning

function to compute the hanning table.

Once the class was constructed, I recreated the results in 3.3.1.1 using the new

object oriented code. The results were similar but less prone to error during

expensive frequency transmissions. It was during the construction of the class that

I decided to work in samples instead of seconds as the main scheduling component

in my granular synthesis program. When the sampling rate is 44100

samples/second, each sample is 1/44100 of a second long. To constantly convert

samples to seconds and then back to samples was cumbersome and by the time I

had gotten this far I was accustomed to converting samples to seconds in my head.

I marked down some common time lengths in samples and memorized them, and

their relative positions made it easy for me to comprehend the code when it was

scheduled in samples. Particulary difficult in the beginning for me was calculating

how many samples the grain duration should be. I settled on a range of 1800-

29

5000, which represents a time span from .04 to .11 seconds, a normal range,

according to Roads, to deal with in granular synthesis. (Roads ’01)

The grainMaker class having been established, I moved on to constructing and

playing multiple grain streams at once, in order to begin to build complex clouds

capable of producing lively sonic textures.

3.3.1.3. Multiple Grain Streams

The pursuit of multiple grain streams in C++/Portaudio has been very fruitful for

me, and I am able to comfortably play 32 simultaneous grain streams over a long

period of time, with frequency and duration changes with no audible error. At

1800 samples or .04 seconds, this is approximately 800 grains per second, a very

large number considering the benchmarks used in other publications, where 100

grains a second is referred to as “a large number.” (Roads ’01)

Once I was capable of playing these grain streams and made corrections for grain

overlap and clipping prevention, I moved on to the challenge of computing a large

number of Hanning tables for use throughout the program. This would make it

possible for grains to have varying durations and move seamlessly from duration to

duration without having to constantly calculate envelope values. I pre-cached 100

Hanning tables in a structure inside the program and then gave access to these

values from within the class. This proved to be a worthwhile optimization scheme,

which takes the weight off of the processor in terms of calculating the Hanning

window during every Portaudio callback, several times a second.

Randomizing the frequencies over the various grain streams gave subtle harmonic

effects when the frequencies within the streams stayed constant but varied over the

whole. Changing stream frequencies from frame to frame gave a bubbling sound

that was lively but aimless. Restricting this movement, however, and changing it

over time led to some interesting timbres that were fluid and natural.

Having achieved the benchmark of multiple grain streams containing sinusoidal

wavetable data, I then played around with other waveforms such as square waves,

pulses, and noise. Mixing these wavetables together had very interesting effects.

Desiring the ability to push the limits of granular synthesis in my own framework,

I began entertaining the possibility of hooking the grain streams up to pre-sampled

sound file data. This task proved to be more difficult than I had originally

30

imagined.

3.3.1.4. Reading In a Sound File

When I began to search for libraries that are capable of reading in sound files, I

found that like many libraries which are available for access within the C++

language, most of these were “bloated,” or contained many features which I would

not use and hence would drag my program down. I additionally suffered from

compatibility issues due to the various methods of compiling executables for the

OS X platform (Carbon and Mach-o). I had so far been developing my

application in Carbon, which makes it more suitable for cross-platform

development. The libraries that I was investigating to read sound files were

primarily of the Mach-o persuasion, and transferring from one to the other, which

I attempted over the summer as part of the mrbNoise project (to include MIDI), is

very difficult and cumbersome.

I began to port the project to Mach-o when I remembered that Processing had a

function that made it quite simple to read in sound files. Recalling the work I had

been doing in Zach Lieberman’s “SetPixel” class, I began to wonder if there was a

simple method, using Processing, which I could use to produce raw, C++ friendly

sound files with no header.

3.3.1.5. Java/Processing Applet

Processing is a cross-platform, open source initiative started by Ben Fry and Casey

Reas from the MIT Media Lab. They began to develop it as a learning platform (a

la DBN) for designers interested in interactive artwork, and it has since developed

into a mature language capable of stunning results. As is commonly the case with

Processing, the commands for reading and modifying a sound file were extremely

well documented and worked very well. I simply hooked up one function which

read sound files to another which outputs text files, and I had a program to

produce raw, 8-bit, headerless binary text files which I could feed to my C++

framework in the same way I was processing image files in Zach’s Image Processing

class. This program, which is around 15 lines long, looks like this:

BSound samp; // Establish a placeholder for a soundfile

void setup() // Initiate the setup routine
{
 samp = loadSound("stone.wav"); // Assign an actual file
 // Place the file into an array
 byte[] samps = new byte[samp.length];

31

 // Print the length of the sample to the console
 println(samp.length);

 // Go through all of the samples
 for (int i=0; i<samp.length; i++) {
 byte a; // Choose a byte
 a = (byte)(samp.samples[i])+127; // Add constant value
 samps[i] = a; // Place the byte into the array
 }
 saveBytes("stone.txt", samps); // Save to a text file
}

The “//” marks throughout the program are comments, which are bits of code

which are there to help the programmer and cannot be read or interpreted by the

computer.

Once this program was completed and deemed successful, I created several 5

second mono 8-bit sound files and began to reorganize the logic of the mrbGrains

program to fit these sampled sounds.

3.3.1.6. Multiple Grain Streams Reading Sound Files

I returned to the framework that had 32 grain streams playing sinusoids, and

decided to divide these 32 grains up into four sections of 8 which would each play

the same sample. This would let me freely mix the samples as they were being

granulated, which was a final goal of the performance tool.

The first implementation allowed each grain to randomly choose a bit of sound

from one of the four samples. This sounded noisy and interesting yet it did not

offer the amount of control I was interesting in executing over the streams and

overall sound. I decided instead to divide the streams up into four groups that

would allow for a constant number of grains playing each sample at any given time.

The first 8 grains grabbed the first sample, the second 8 grabbed the second

sample, etc. In this manner I was capable of more precisely controlling and

monitoring performance during these stages.

The capability to simultaneously granulate four sound files with 32 grain streams

was encouraging but I knew I needed to add interactivity in order to truly test the

limits of the system. It was then that I decided to implement the GUI I had

written for mrbNoise in order to quickly test the various parameters at hand.

3.3.1.7. Interface and the GUI

The mrbNoise program had a GUI that was simple, effective, and coded in a

32

relatively coherent manner, so it offered an easier and more elegant solution than

any GUI library I could have found to work well within the Carbon framework. I

began by invoking a simple x/y controller that allows for the simultaneous control

of two parameters with the mouse. This interface was created in GLUT, a

subdivision of OpenGL that allows for easy windowing, mouse and keyboard

control.

Once I had the x/y controller hooked up to something (the duration of the grains

in any given stream, for example), I wanted to increase the number of windows I

had access to. The mrbNoise program had 7 or 8 windows that were crudely not

object oriented, and to begin with I followed a similar path with mrbGrains.

3.3.1.8. Interface Design

A bit of Interface Design was necessary at this stage, where I knew interactivity was

key for testing real-time capability. I devised a system whereby the user would

control parameters of the grains from the point of view of the different samples

being granulated. Since there were four samples, I would create four sets of

windows and GUI elements to correspond to the sample.

3.3.1.9. Object Oriented Windowing

Achieving Object Oriented windowing for this section of my thesis development

was only a partial success. I created a simple bit of code for each window type

(output window, slider, x/y controller, etc.), and can create complex interfaces

comprising of these bits of code.

3.3.1.10. GUI “Plumbing”

The Object-Oriented windowing code complete, I began to insert it throughout

the program to test its capabilities. The GLUT system works extremely well, and

OpenGL and Portaudio are quite complimentary libraries. Duration, frequency,

jitter, and volume are all being controlled with the GUI as are the position of the

grain on the sample and the panning of each grain stream. Keeping these variables

as neat as possible and reducing them to the fewest amount possible (one for x and

one for y values in the square x/y windows, just one for y in the slider windows)

helps to prevent clutter within the program.

3.3.1.11. Interface Conclusions

At this point in my programming and conceptualization I realized that an entire

section of my thesis Methodology needs to be focused on the software interface of

33

my performance software. The interface thinking and programming which I

undertook during the creation of the audio component of my thesis were essential

steps in finalizing an interface concept and executing it.

3.3.2. Visual Component: Texture Synthesis

Texture synthesis is the mechanism by which real time animated, non-tiled

textures can be achieved. The visual dream of this thesis, to synthesize textures of

the caliber achieved in early abstract films like those of Stan Brakhage and Harry

Smith, can be realized using the principles of texture synthesis.

Animation in the realm of texture synthesis demands real time performance, which

up until Zelinka and Garland published their papers on jump map based texture

synthesis, was not available in a freely available algorithm or anywhere else. I have

achieved animated texture synthesis with an OpenGL framework, with Jump Maps

I generated using Zelinka’s published Windows Software for jump map generation.

Using this program, I was able to focus my attention on synthesis, the component

that directs the majority of the “look” of the thesis.

The methodology I followed to execute the visual component of the thesis, texture

synthesis, will be outlined here.

3.3.2.1 Real-Time Texture Synthesis

It is possible to synthesize visual textures in real time by restricting the types of

textures that the synthesis algorithm is capable of handling. By limiting my palette

to textures which are naturally derived and therefore by necessity somewhat

stochastic, I am capable of synthesizing textures that other algorithms are incapable

of doing in the same amount of time.

When compared to the texture synthesis algorithms that Zelinka and Garland,

Efros, etc., have published, Audiovisual Granular Synthesis has an entire extra

dimension to deal with: time. Once I was capable of synthesizing textures in real

time with a C++ application, it became apparent, as predicted, that temporal

coherence, or temporal aliasing, would be a concern. Visually, it is a fractured and

jarring experience to witness a random generation each frame, even if the palette of

the randomness is extremely limited. It is necessary, within the algorithm, to

account for the fact that temporal concerns must come into play during the process

of selecting pixels, making jump decisions, etc.

34

Considering this extra dimension is a concern with respect to the dynamism of the

system in the visual sense. The ability to transition from slowly evolving to quickly

randomly changing textures is key within the compositional structures I have

aimed for. The sound component is incredibly dynamic and can act as a

thoroughfare for any number of different sound types, lengths, etc. A major

concern of mine during the programming of this thesis was to create a visual

system which could match the dynamism of the audio component.

Controlling these dynamics comes down to keeping a history for each pixel which

“remembers” what color the pixel in any given position was in the last frame, two

frames, etc. Using the amount of these pixels, which repeat their histories (I call

them “keeper pixels”), as a value with a gauge or “knob” in the system, I can

effectively control sameness, and therefore how rapidly or slowly the texture

evolves. This methodology is unique to this thesis and represents an adaptation to

the Zelinka-Garland algorithm that acts in similar ways to many of their own

methods – a manner of controlled randomness.

I have implemented the “keeper pixels” and have demonstrated them along with

the granular synthesis as a prototype for this thesis. I have also investigated but not

implemented methods of tweaking the statistical components of the jump map in

order to weight the jumps according to jumps which have already been made, a

sort of “fine tuning” knob for keeper pixels.

Real Time texture synthesis is an essential component of Audiovisual Granular

Synthesis, and the methods used in the Zelinka-Garland algorithm do not greatly

differ from the methods used in the audio granular synthesis. Combining these

two became much easier and more natural once the visual component fell into

place.

3.3.2.2. The Analysis / Synthesis Schism

Central to the concept of real-time texture synthesis is the separation of the work

into two main operations, one concerned with analyzing the input texture, and the

other involved with synthesizing the texture for the novel, larger output. These

operations break down into a program that analyzes the image to generate the

jump map and makes a lot of statistical conclusions about the input image during

the process, and a program which implements the synthesis algorithm and offers

visual credence to the concepts contained therein.

35

Because the analysis of the input texture, and the operations involved in comparing

an extraordinarily large number of pixels to each other, is extremely expensive

computationally, the need to only run these routines once are extremely beneficial.

In this way, even a texture whose jump map takes a few minutes to generate, which

is very long using Zelinka’s texture_analyze program, only takes a fraction of a

second to synthesize.

Synthesizing the output texture involves following a path along the output texture

and placing pixels along the path according to the condition of its immediate

neighbors. Zelinka and Garland discuss various paths to follow and settle on a

space-filling curve known as the “Hilbert Path” when iterating through the output

texture pixels. The reasoning behind this will be discussed more extensively in the

section devoted entirely to the synthesis algorithm.

3.3.2.2.1. The Jump Map

An integral component of synthesizing novel textures is being aware of the spatial

information of the input texture at all times. This intuition is confirmed by nearly

every texture synthesis algorithm since its inception. From the filtering based

methods which relied on theories of psychophysical theories of eye movement and

visual perception to the tiling based methods of recent years, spatial preservation is

the key component or “problem” that any algorithm has to solve.

The solution which the jump map algorithm offers is to pre-compute, for each

pixel in the input image, three addresses elsewhere on the input image which reside

in neighborhoods which are similar to that pixel. Along with this address, there is

a metric of “sameness” which is applied to each of these three choices, a floating-

point value between 0 and 1.

In order to determine these values, and build the jump map, Zelinka and Garland,

in their 2003 paper on the subject, outline methods for executing these

comparisons in an extremely quick and efficient manner. Based on the desire of

the algorithm to preserve spatial sameness, according to the principle that “This

texture synthesis algorithm is based on the assumption that "the neighbourhood of

each output pixel to be synthesized will closely resemble the input neighbourhoods

from which the nearby already-synthesized pixels were copied." (Zelinka 2003)

In the program that generates the Jump-Map, windows software which runs inside

of a “Linux-like environment” called Cygwin, several statistical operations and

Figure 18. A
visualization of the
Hilbert path, from
beginning to end (black
to white). Notice the
square artifacts. This
caused initial troubles
with my implementation
of the texture synthesis
algorithm, but have since
been removed. The
fractal quality of this
image delineates the
methods of creating it.

36

evaluations are made on the input texture. Based on the idea that if each pixel has

a set of options in the form of addresses of pixels in similar neighborhoods that

synthesis through iterative pixel selection (per-pixel processing) will be more

coherent over the entire surface of the output texture, the texture analysis software

is chiefly concerned with comparing every neighborhood in the input texture with

every other neighborhood.

A neighborhood is defined as a group of pixels that are spatially continuous, and

usually takes the form of squares from 3x3 to 15x15 pixels. By working with

varying neighborhood sizes, it is possible to synthesize textures with different

granularities in terms of the details of their contents. For example, a texture

containing pebbles may benefit from a smaller neighborhood size than a texture

containing a boulder or two. These rules are not hard and fast however, and

certainly vary from texture to texture.

Comparing every neighborhood to every other neighborhood, using a process

known as “brute-force comparison” is not an appropriate solution for this thesis

because of the sheer amount of time this would take for a series of textures with

varying neighborhood sizes. Zelinka and Garland have applied statistical

techniques to reduce the dimensions of the vectors being compared when each

neighborhood is stretched out and considered in the vector domain. The steps

involved in generating a jump-map for a texture include:

1) Choose an input texture – this input texture must be a square, and a power
of 2

2) Create a Gaussian Image Pyramid - for this input texture, create an image
that consists of multiple resolutions of the same image superimposed on
each other. This maintains and emphasizes spatial information and
makes the image more susceptible to further vector dimension reduction.

3) Principal Components Analysis (PCA) – in order to reduce the dimension
of the vectors being compared, that is, in order to decrease the number of
values which need to be considered in the analysis phase, it is necessary to
run a scheme similar to Eigenvalue extraction on the input texture.
Consult appropriate literature about statistical analysis and reduction of
large dimension vectors for explanations of these principles, as they lie
somewhat out of the scope of this thesis. To simplify the issue, PCA
attempts to summarize the information in the input texture to the extent
that operating comparisons between fewer objects could be some
percentage as accurate as operation comparisons between every
neighborhood.

4) Approximate Nearest Neighbor Searching (ANN) – using the remaining
vector dimensions after PCA is complete, ANN attempts to find the

37

neighborhoods which are closest to the neighborhood being analyzed.
This is another method which is capable of “sampling” some percentage
of the original image in order to approximate analyzing the entire image.

5) L2-Norm Measurement – Once the remaining vector dimensions are in
place, it is only necessary to go through the remaining components of the
image and determine how similar they are to each other. The top three
most similar neighborhoods are stored, along with a normalized value
representing the amount of sameness the neighborhoods share, in a data
file which is the Jump Map.

Along with these steps, other techniques are applied to preserve spatial coherence

and reduce the amount of time necessary to compute the jump map for a

reasonably sized input texture.

Zelinka and Garland report that “brute force” comparisons can take up to 30

minutes. (Zelinka 2003) I have used the “texture_analyze” software that Zelinka

has written, and normal textures take in the order of seconds to complete.

The Jump map is a simple data file with a .jtm file extension, which looks like:

128 128 // This connotes the dimensions of the texture
JumpList: 3 // This is the number of jumps stored for this pixel
33 56 .4500 // XPOS YPOS VALUE for this pixel, first jump
110 24 .5000 // Second jump, xpos ypos value
100 100 .821 // Third jump xpos ypos value

For the purposes of my program it was easier for me to strip this image down into

all floating point numbers and read it into an array when the program is

engendered.

Because of the extremely advanced nature of the vector math and statistical analysis

involved in the creation of the jump map generation program, it was highly

beneficial for me to use Zelinka’s software. The overhead, time wise, involved in

implementing these various mathematical methods and functions is overwhelming.

Additionally, my choice to program this software on the Macintosh platform, a

choice which has afforded me an incredible amount of leeway in terms of its ability

to process synthesized frames with extreme speeds, has also handicapped my

abilities to implement the libraries which have been used and created by other

programmers and engineers interested in PCA, ANN, Eigenvalue extraction, etc.

Because the creation of the Jump Map is kind of a “given” and will not really

change with changes in the synthesis algorithm, in many ways Zelinka and Garland

have split up the “science” and the “art” of the problem of texture synthesis. While

Figure 19. Mr. Zelinka’s
diagram explaining Poisson
Disc Distribution, a method
which ensures the reduction
of vector dimensions during
texture analysis. The red
square represents the target
neighborhood for analysis,
and the other circled squares
represent neighborhoods
which are a certain distance
away from the target
neighborhood. This reduces
the amount of overlap during
comparisons. (Zelinka 2003)

38

the decisions to use such beautiful mathematical concepts such as Poisson Disc

Sampling (a scheme to avoid overlapping in neighborhood searches, generally used

in N squared N problems to reduce the dimensions of the comparisons) are quite

artful, the visual components of placing pixels are all left to the synthesis

component, which is occurring in real time. Here we see the true brilliance in the

algorithm and the justification for the Jump Map itself.

3.3.2.2.2. Jump Map Based Texture Synthesis

While it may seem counterintuitive that natural, partially stochastic textures may

conceivably be easier to synthesize in any context, due to their complexity and

natural beauty, Zelinka and Garland’s algorithm has the distinction of working

best with these types of structures. It is ironic that a method like Jump Map Based

Texture Synthesis, which uses no psychophysics, no filtering or steerable pyramids,

and none of the other flourishes or mathematical tricks that other computer

graphics algorithms which fetishize naturalism rely on, can perform so well under

these circumstances.

The output texture is the main target of this component of texture synthesis, which

in fact consists of the synthesis itself. In a setting like Audiovisual Granular

Synthesis, where texture synthesis will be animated and performed in real time, it is

important that the algorithm for synthesis is efficient and works well in a

computationally taxed setting.

The objective of the algorithm is to cover the output texture with a larger, novel

texture synthesized from the jump map that was generated by analyzing the input

texture. By following a path through the output image, it is possible, using the

jump map, to synthesize a new novel texture by using simple rules which, when

running side by side, constrain the development of the image to reproducing, in a

manner of speaking, a new novel texture from the input texture.

3.3.2.3.1. Pixel Ordering

As Zelinka and Garland have pointed out, one of the major factors involved in

synthesizing for an output texture is the order of the pixels that you follow during

the synthesis algorithm. (Zelinka 2003) The three major paths they investigated

were scanline, which is a traditional method of starting with the 0,0 pixel and

continuing to the width,height pixel, line by line. Serpentine order follows lines

but instead of going from 0, Width to 1,0, it would go from 0, 0 to 0,Width, to

39

Width,1 to 0,1, etc. Finally Zelinka and Garland present a special type of path

that is classified as a space-filling curve, known as the Hilbert Path.

A space-filling curve is a curve that hits all of the pixels in a space without crossing

over itself or repeating any pixels. The Hilbert path is such a curve that works with

squares whose sides are powers of two, perfect for texturing scenarios where

textures are often limited to these sizes and dimensions anyhow. (Zelinka 2003)

Understanding the reason why following the Hilbert Path is important goes along

with understanding the texture synthesis algorithm as a whole.

Starting with a random point on the output texture and following the Hilbert path

from there, the output texture is filled in with values by determining which pixel

from the input texture to copy to the current pixel. In an animated setting, these

pixel decisions occur Texture_Width*Texture_Height times per frame, or over

seven million times per second for a 512x512 texture.

3.3.2.3.2. Temporal Aliasing and the “Keeper Pixels”

The questions of the algorithm involve how to choose which pixel from the input

texture to choose, and when to jump to another neighborhood according to the

jump map, and of these jumps, which jump to take. The temporal domain

involved in animating texture synthesis adds the possibility of the “keeper” pixel,

that is meant to create stronger temporal coherence by forcing sameness between

frames.

The decision of which pixel to take from the input pixel in a situation where there

is no jump occurring, we simply choose a neighbor from the available pixels (those

which have already been synthesized). For example if the last point on the curve is

the pixel below the current pixel, the current pixel would take its value from the

pixel above the address used for the last pixel, the corresponding pixel. This is a

strong measure to ensure spatial cohesiveness across the surface of the output

texture, and it works very well as a backbone to the jumps that are involved to

ensure randomness to work well with the semi-stochastic natural textures I

thankfully desire to synthesize.

The question of when to jump and which of the jumps to take, and when to use a

keeper pixel, are handled the same except for one situation, which is known as the

border condition. Every other instance when jumping is desirable is controlled by

probability and statistically controlled environments, which ensure that events

40

occur in certain ratios to each other and in certain ratios in relation to the entire

output texture.

The statistical control over these decisions allows for great leeway, and therefore

the control over the graphics is similar to the control over the audio. Granular

synthesis is dependant on the idea that, when composing textures out of smaller

elements, the statistical control over the placement and properties of those

elements is an essential set of controls to have in order to ensure a dynamic textural

system.

The Jump Map allows the animated textures to take life and change over time.

The augmented, time dimension handling Jump Map ensures temporal coherence

by forcing sameness frame to frame in the same way that the original algorithm did

spatially.

3.3.3 Performance Software Interface

As the other subsections in this Methodology are mostly concerned with the

implementation and fine tuning of the algorithms which when combined make up

Audiovisual Granular Synthesis, this subsection will deal with the software

interface which allows for the real time performance of the audiovisual textures I

have created.

I will first discuss the narrative structure that is tied into the interface, and I will

then proceed to discuss the graphical user interface itself. In this way I can discuss

the conceptual components of the interface and their visual implementations

separately.

3.3.3.1. Narrative Map

41

3.3.3.2. Graphical User Interface

3.3.3.3. Interface Advancements

4. Evaluation

4.1. Evaluation of Audio Component

4.2. Evaluation of Visual Component

4.3. Evaluation of Audiovisual Solutions

4.4. Evaluation of Interface

4.5. Evaluation of Performance

5. Conclusion

Audiovisual Granular Synthesis is a solution to the problem of how to relate audio

and visual elements in a textural performance context. By investigating and

unifying advanced synthesis types in the visual and audio domains, Audiovisual

Granular Synthesis intends to prove that linkings on the micro scale are beneficial

to creating the feeling of unification between the audio and the visual, toward the

end of creating a series of performable, animated, audiovisual textures.

42

6. Works Cited / References:

Books / Articles

Ashinkmin, M. 2001. “Synthesizing natural textures.” In Proceedings of 2001 ACM
Symposiom on Interactive 3d Graphics. ACM SIGGRAPH, North Caroline, 217-
226.

Bencina, Ross. "Implementing Real-Time Granular Synthesis." Self-Published Draft,
2001.

Brakhage, Stan. Essential Brakhage. New York: McPherson & Company, 2001.

Chusid, I. Songs in the Key of Z. Chicago: A Capella Books, 2000.

Cowell, Henry. New Musical Resources. Reprinted in 1969, Something Else Press,
New York. New York: Alfred A. Knopf, 1930.

Criminisi, A. et al. "Object Removal by Exemplar-Based Inpainting." Proceedings of
CVPR 2003, Madison, Wisconsin, 2003.

Efros, A. and Freeman, W. "Image Quilting for Texture Synthesis and Transfer."
Proceedings of SIGGRAPH '01, Los Angeles, 2001.

Harley, James. Persepolis Record Review. Computer Music Journal. Cambridge:
MIT Press, Winter 2001.

Harley, James. "The Electroacoustic Music of Iannis Xenakis." Computer Music
Journal. Cambridge: MIT Press, Spring 2002.

Liang, Lin, et. al. "Real Time Texture Synthesis by Patch Based Sampling." ACM
Transactions on Graphics, 2001.

Levin, G. "Painterly Interfaces for Audiovisual Performance." Master's Thesis in
Media Arts and Sciences, Massachusetts Institute of Technology, 2000.

Papoulis, A. "Brownian Movement and Markoff Processes." Probability, Random
Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp.515-
553, 1984.

Perlin, K. "An image synthesizer." Proceedings of SIGGRAPH '85, 1985.

Roads, C. "Multiple Wavetable, Wave Terrain, Granular, and Subtractive Synthesis."
The Computer Music Tutorial. Cambridge: MIT Press, pp. 168-184, 1996.

Roads, C. Microsound. Cambridge: MIT Press, 2001.

Sitney, P. Adams. Visionary Film: The American Avant-Garde, 1943-2000. UK:
Oxford University Press, 2000.

Trocco, Frank and Pinch, Trevor. Analog Days: The Invention and Impact of the
Moog Synthesizer. Cambridge: Harvard University Press, 2002.

43

Xenakis, Iannis. Formalized Music: Thought and Mathematics in Composition.
Indiana: Indiana University Press, 1971.

Zelinka, Steve and Garland, Michael. “Jump Map-Based Interactive Texture
Synthesis.” ACM Transactions on Graphics, Vol V. No. N, September 2003, Pages
1-31.

Zhu, S. et al. "Filters, random-fields and maximum-entropy (Frame)." 1998.

Recordings

Henry, Pierre. Variations Pour une Porte et un Soupir. (Variations for a Door and a
Sigh), 1965.

Roads, Curtis. Klang-1. 1974.

Roads, Curtis. Prototype. 1975.

Stockhausen, Karlheinz. Kontakte, 1959. Performed by James Tenney and William
Winant, 1978.

Xenakis, Iannis. Analogique A-B for string orchestra and tape. 1959.

Xenakis, Iannis. Persepolis. 1971.

Films

Brakhage, Stan. Eye Myth, 1972.

Brakhage, Stan. Mothlight, 1963.

Brakhage, Stan, The Dante Quartet, 1987.

Smith, Harry. Early Abstractions. 1964.

Smith, Harry. Late Superimpositions. 1964 .

Smith, Harry. Mirror Animations. 1979.

Smith, Harry. Oz: The Tin Woodman's Dream. ca. 1967.

